A STUDY ON KINETIC C-H-ACIDITY: THE &-EPIMERIZATION OF B-LACTONES

Johann Mulzer and Matthias Zippel

Institut für Organische Chemie der Universität Karlstrasse 23, D-8000 München 2, West-Germany

<u>Summary</u>: The rate constants of the α -epimerization of the β -lactone <u>1</u> show a LFE-correlation with the solvent donicity parameters DN or B; additionally, the kinetic CH-acidity of <u>1</u> is unusually high.

The enolization of carbonyl compounds has been a subject of intensive investigation for many years¹. Among the various methods which have been used for studying this reaction kinetically are deuteriation, bromination, racemization and epimerization. Herein we report kinetic data on the $\boldsymbol{\alpha}$ -epimerization² of β -lactones.

Model System and Kinetic Scheme

Cis-4-tert-butyl-3-phenyl-2-oxetanone³ (<u>1</u>)proved to be a suitable model system (Scheme I).

On heating <u>1</u> in various solvents we observed a competition between epimerization (k_{ep}) and decarboxylation³ (k_d) . In CH₃OD, DOAc or pyridine/D₂O <u>2</u> was obtained with >95% deuterium at C-3. As the H/D-exchange of <u>2</u> is more than 100 times slower than the isomerization <u>1→2</u> we conclude that <u>1</u> epimerizes via an enolization mechanism involving C-3 and the carbonyl moiety. It was independently shown that under the conditions a re-isomerization of <u>2</u> to <u>1</u> does not occur;

thus Scheme I is composed of first order steps only and k may easily be calculated from the two observables k and R (Table I).

Solvent Effects on k (Table I).

Linear Free Energy (LFE) correlations of rate constants with empirical solvent parameters are of central importance in the determination of reaction mechanisms⁴. The overwhelming majority of cases can successfully be treated by using Lewis acidity parameters like Y,Z,AN or E_{π}^{4} . By con-

Solvent	в	Temp	k ^b (sec ⁻¹)	R ^C	$k_{ep}(100^{\circ}C)sec^{-1}$
1,2-Dichlorobenzene	28	160	1.2.10-4	<0.020	<3.6.10-8 d
Acetic Acid (1)	131	140	1.0.10-4	0.097	$6.6 \cdot 10^{-7}$
Benzonitrile (2)	155	150	8.0'10 ⁻⁵	0.072	1.8.10 ⁻⁷
Acetophenone (3)	202	140	2.9.10-5	0.41	6.0.10-7
Benzylalcohol (4)	208	100	3.8.10-6	1.2	2.0.10-6
THF (5)	287	140	6.0.10-5	4.3	4.2°10 ^{-6d}
НМРТ (6)	471	50	1.3.10-5	> 50	3.4°10 ^{-4d}
Pyridine (7)	472	100	6.8.10-5	> 50	6.8°10 ⁻⁵
Triethylamine (8)	650	50	5.3.10-4	>50	8.3 [•] 10 ^{-3^a}
20% DABCO in					ba
1,2-Dichlorobenzene		30	1.3.10-3	> 50	5.1°10 ^{-2°}

Table I. Solvent Dependence of k

^aAll kinetic results were obtained by 60-MHz ¹H-NMR; ^bk= $\frac{1}{t} \ln \left[\frac{1}{l_1} \right]_0 = k_{ep} + k_d$, accuracy of k ~ 5%; ^cR = $\frac{k_{ep}}{k_d} = \frac{\lfloor 2 \rfloor + \lfloor 4 \rfloor}{\lfloor 3 \rfloor}$; all Rs are averages of 20 different values determined over the whole reaction period; ^dextrapolated to 100°C using the activation parameters of k_{ep} in quinoline ($\Delta H^{\ddagger} = 16.1$ kcal mole⁻¹, $\Delta S^{\ddagger} = -35$ eu).

trast, LFE-correlations solely based on Lewis basicity parameters (e.g. B^5 or DN^6) are extremely scarce in Organic Chemistry. It can be seen from Fig.1 that k_{ep} belongs to this rare category. Only B (and DN⁷) furnish the required linearity (Fig.1a), whereas E_{T} (and similarly Y,Z and AN) totally fail (Fig.1b). This result, and in particular the enormous increase of k with the solvent donicity (a rate difference of $\sim 10^5$ is observed on comparing 1,2-dichlorobenzene and triethylamine) may be interpreted in terms of a nucleophilic attack of one or more solvent molecules on 3-H during the rate determining step of the epimerization. However, this deprotonation process does not lead to the formation of a real solvent separated enolate intermediate. We may draw this conclusion from previous experiments with 5, the lithium enclate of 1/2. 5, which in THF may at least partly exist as a solvent separated ion pair⁸, is unstable at temperatures above 0°C and would quickly rearrange into <u>6</u> under the epimerization conditions⁹. So we suggest that on the way from <u>1</u> to <u>2</u> a contact ion pair (<u>7</u>) is passed in which the enclate. 3-H and some solvent molecules (S) are tightly associated. The abovementioned deuterium exchange clearly indicates that 7 has sufficient lifetime for being an intermediate and not merely a transition state. An alternative intermediate would be the enol <u>8</u>. Although <u>8</u> cannot be excluded

Fig.1 Correlations of k_{ep} vs. (a) B b) E_T . Reference value: $k_{ep}^{O} = k_{ep}$ in Benzonitrile. Solvent numbers see Table I.

rigorously, it appears unlikely, because the epimerization of 1 does not underly acid catalysis. So, for example, acetic acid has no extra effect on k_{ep} beyond its donicity (Fig.1). Similarly, trifluoroacetic acid in 1,2dichlorobenzene (v/v 1:9) fails to epimerize $\underline{1}$ even at 140°C. This behavior of 1 differs from that of normal carbonyl compounds which are enolized by bases and acids with comparable rates¹⁰. A reasonable explanation could be seen in the considerable increase in ring strain which would occur during the conversion of $1 \rightarrow 8$ (ca. 4 kcal mole⁻¹, cyclobutane \rightarrow cyclobutene¹¹). In accordance with this argumentation the r-lactone 9¹², which apart from the ring size has the same structural features as 1, rapidly epimerizes in trifluoroacetic acid-1,2-dichlorobenzene (1:9) at 140°C. Kinetic Acidity.From the data of Table I it clearly emerges that k_{ep} and

2168

hence the kinetic acidity of <u>1</u> is unusually high for an ester derivative¹³: even the low donicity of solvents like acetic acid, tetrahydrofurane and acetophenone suffices to abstract the 3-H with measurable rates¹⁴.Apart from the activating influence of the 3-phenyl group this phenomenon is due to a steric reason, namely the loss of the unfavorable cis-eclipsed interactions on the way from <u>1</u> to <u>7</u>. This effect can clearly be seen by comparing the k_{ep} of <u>1</u> to the 3-H/D-exchange rate of <u>2</u> (k_{H-D}) under identical conditions (pyridine/D₂0, 140°C). The rate determining step of both reactions generates the same reactive intermediate <u>7</u>. Therefore the ratio of k_{ep} : $k_{H-D} = 102$ reflects the higher amount of strain release in <u>1</u>. Similarly,<u>1</u> epimerizes 2960 times faster ([D₅] pyridine, 140°C) than its open chain analogue <u>10</u>, because the strain relief is far higher for the rigid lactone <u>1</u> than for the conformationally mobile ester <u>10</u>.

References and Notes

- 1. a.Summary in "Comprehensive Organic Chemistry", D.H.R.Barton and W.D.Ollis, ed.,1sted.Vol.I.,p.1027,Pergamon Press,Oxford,1979. b.House,H.O., "Modern Synthetic Reactions", 2nded.,p.498,Wiley,Menlo Park,1972.
- 2. An *∝*-epimerization of cis-3,4-diphenyl-2-oxetanone was presumed but not proved by Imai,T.Nishida,S.J.Org.Chem.<u>1980</u>,45, 2354.
- 3. Mulzer, J.; Zippel, M.; Angew. Chem. Int. Ed. Engl. 1980, 19,465.
- 4. Review: Reichardt, Ch; Angew. Chem. Int. Ed. Engl. 1979, 18, 98.
- Koppel, I.; Paju, A.; Reakcionnaja Sposobnost, Organiceskich Sredinij, <u>1974</u>, 11, 121.
- 6. Gutmann, V.; Electrochim. Acta, 1976, 21,661.
- 7. DN and B can be linearly correlated with each other 4^4 .
- Wang, H.C.; Levin, G.; Szwarc, M.; J.Am. Chem. Soc. <u>1977</u>, 99, 5056; Hünig, S.; Wehner, G.; Chem. Ber. <u>1980</u>, 113, 302.
- 9. Mulzer, J.; Kerkmann, Th.; J.Am. Chem. Soc. 1980, 102, 3620.
- e.g.Schriesheim, A.; Muller, R.J.; Rowe jr. C.A., J.Am. Chem. Soc. <u>1962</u>, 84,3164.
 Shechter, H.; Collis, H.J.; Dessy, R.; Okuzumi, Y.; Chen, A.; J.Am. Chem. Soc. <u>1962</u> 84,2905.
- 11. Benson, S.; Thermochemical Kinetics 1sted., p. 179. Wiley, New York, 1968.
- 12. Mulzer, J.; Brüntrup, G.; Angew. Chem. Int. Ed. Engl. 1979, 18,793.
- 13. The H/D-exchange rate of ethyl phenylacetate is 10^3 lower than k_{ep} under identical conditions $(100^{\circ}C, pyridine/D_20)$.By contrast, k_{ep} is in an order of magnitude comparable to the enolization rates of ketones and aldehydes (e.g.2-methyl-propanal in pyridine/H₂0:7.9[•]10⁻⁶ 1 mole⁻¹ sec.⁻¹ at 35[°]C;Bender,M.L.;Williams,A.; J.Am.Chem.Soc.<u>1966</u>,88, 2502. Under identical conditions $k_{ep} = 1.7^{•}10^{-6}$ 1 mole⁻¹ sec⁻¹).
- 14. To exclude basic impurities as far as possible the kinetic experiments were performed in quartz tubes with carefully purified solvents and recrystallized <u>1</u>.

(Received in Germany 18 March 1981)