A STUDY ON KINETIC C-H-ACIDITY: THE &EPIMERIZATION OF R-LACTONES

Johann Mulzer* and Matthias Zippel

Institut fur Organische Chemie der Universitat Karlstrasse 23, D-8000 Miinchen 2, West-Germany

Summary: The rate constants of the **X**-epimerization of the B-lactone 1 show **a LFE-correlation with the solvent donicity parameters DN or B; additionally, the kinetic CH-acidity of 1 is unusually high.**

The enolization of carbonyl compounds has been a subject of intensive investigation for many years 1 **. Among the various methods which have been used for studying this reaction kinetically are deuteriation, bromination,racemization and epimerization. Herein we report kinetic data on the o<-epimerization 2 of B-lactones.**

Model System and Kinetic Scheme

Cis-4-tert-butyl-3-phenyl-2-oxetanone3 (I)proved to be a suitable model system (Scheme I).

On heating _1 in various solvents we observed a competition between epi $merization (k_{ep})$ and decarboxylation³ (k_d) . In CH₂OD, DOAc or pyridine/D₂O 2 **was obtained with >95% deuterium at c-3. As the H/D-exchange of 2 is more than 100 times slower than the iso**merization $1+2$ we conclude that 1 **epimerizes via an enolization mechanism involving C-3 and the carbonyl moiety. It was independently shown that under the conditions a re-iso**merization of 2 to 1 does not occur;

thus Scheme I is composed of first order steps only and k ep may easily be calculated from the two observables k and R (Table I).

Solvent Effects on k ep (Table I).

Linear Free Energy (LFE) correlations of rate constants with empirical solvent parameters are of central importance in the determination of re-4 action mechanisms . The overwhelming majority of cases can successfully be treated by using Lewis acidity parameters like Y,Z,AN or E_r^{4} . By con-

Solvent	в	Temp $^{\circ}$	k^{b} (sec ⁻¹)	R^{c}	k_{ep} (100°C)sec ⁻¹
1,2-Dichlorobenzene	28	160	$1.2^{\bullet}10^{-4}$	≮0.020	$\sqrt{3.6 \cdot 10^{-8}}$ ^d
Acetic Acid (1)	131	140	$1.0^{4} 10^{-4}$	0.097	$6.6 \cdot 10^{-7}$ ^d
Benzonitrile (2)	155	150	$8.0 \cdot 10^{-5}$	0.072	$1.8 \cdot 10^{-7}$ ^d
Acetophenone (3)	202	140	$2.9 \cdot 10^{-5}$	0.41	$6.0 \cdot 10^{-7}$ ^d
Benzylalcohol (4)	208	100	$3.8 \cdot 10^{-6}$	1.2	$2.0 \cdot 10^{-6}$
THF (5)	287	140	$6.0 \cdot 10^{-5}$	4.3	$4.2 \cdot 10^{-6d}$
HMPT (6)	471	50	$1.3 \cdot 10^{-5}$	>50	$3.4 \cdot 10^{-4d}$
Pyridine (7)	472	100	$6.8 \cdot 10^{-5}$	50°	$6.8 \cdot 10^{-5}$
Triethylamine (8)	650	50	$5.3^{\circ}10^{-4}$	>50	$8.3^{\circ}10^{-3^{d}}$
20% DABCO in					
1.2-Dichlorobenzene		30	$1.3 \cdot 10^{-3}$	>50	$5.1^{\circ}10^{-2^{d}}$

Table **1.** Solvent Dependence of κ ep

a a let interest the set of the accuracy of $k \sim 5\%$; $R = e^{kT}$ **%- 12\+1 [43; d values determined over the whole reaction period** ; **extrapolated to 100°C** 71 **all Rs are averages of 20 differenl 3 using the activation parameters of** k_{an} **in quinoline (** $\Delta H^{\top} = 16.1$ **kcal** $mole^{-1}$, $\Delta S^* = -35$ **eu**).

trast, LFE-correlations solely based on Lewis basicity parameters (e.g. B5 or DN 6) are extremely scarce in Organic Chemistry. It can be seen from Fig.1 that k belongs to this rare category. Only B (and DN7) furnish the ap required linearity (Fig.la),whereas ET (and similarly Y,Z and AN) totally fail (Fig.1b). This result, and in particular the enormous increase of k_{on} **ep** with the solvent donicity (a rate difference of $\sim 10^5$ is observed on com**paring 1,2-dichlorobenzene and triethylamine) may be interpreted in terms of a nucleophilic attack of one or more solvent molecules on 3-H during the rate determining step of the epimerization. However, this deprotonation process does not lead to the formation of a real solvent separated enolate intermediate. We may draw this conclusion from previous experiments with 2,** the lithium enolate of <u>1/2. 5</u>, which in THF may at least partly exist as a
--luset concepted ion poin⁸ is unstable at temperatures above 0⁰C and woul **solvent separated ion pair , is unstable at temperatures above O°C and would quickly rearrange into 5 under the epimerization conditions9. So we suggest** that on the way from $\underline{1}$ to $\underline{2}$ a contact ion pair $(\underline{7})$ is passed in which the **enolate, 3-H and some solvent molecules (S) are tightly associated. The abovementioned deuterium exchange clearly indicates that 2 has sufficient lifetime for being an intermediate and not merely a transition state. An** alternative intermediate would be the enol $\underline{8}$. Although $\underline{8}$ cannot be excluded

Fig.1 Correlations of k_{ep} vs. (a) B b) E_T . Reference value: $k_{ep}^O = k_{ep}$ in $E_T = k_{ep}^O$ **Benzonitrile. Solvent numbers see Table I.**

rigorously, it appears unlikely, because the epimerization of 1 does not underly acid catalysis. So, for example,acetic acid has no extra effect on k beyond its donicity (Fig.1). Similarly, trifluoroacetic acid *in* **1,2 dT:hlorobenzene (v/v I:91 fails to epimerize 1 even at 140°C. This behavior of 1 differs from that of normal carbonyl compounds which are enolized by bases and acids with comparable rates¹⁰. A reasonable explanation could be seen in the considerable increase in ring strain which would occur during** the conversion of $1\rightarrow 8$ (ca. 4 kcal mole⁻¹, cyclobutane \rightarrow cyclobutene¹¹). In accordance with this argumentation the \boldsymbol{r} -lactone $\underline{9}^{12}$, which apart from the ring size has the same structural features as 1, rapidly epimerizes in **trifluoroacetic acid-1,2-dichlorobenzene (I:91 at 140°C.**

hence the kinetic acidity of 1 is unusually high for an ester derivative¹³: **even the low donicity of solvents like acetic acid, tetrahydrofurane and acetophenone suffices to abstract the 3-H with measurable rates ¹⁴ .Apart from the activating influence of the 3-phenyl group this phenomenon is due to a steric reason, namely the loss of the unfavorable cis-eclipsed interactions on the way from 1 to 2. This effect can clearly be seen by comparing the k ep** of <u>1</u> to the 3-H/D-exchange rate of $\frac{2}{\mu}$ (k_{H-D}) under identical conditions (pyridine/D₂0, 140^oC). The rate determining step of both reactions generates the same reactive intermediate $\frac{7}{5}$. Therefore the ratio of k_{en} : k_{H-D} = 102 reflects the higher amount of strain release in 1. Similarly, 1 epimerizes 2960 times faster $(\lceil D_{5}\rceil)$ pyridine, 140^oC) than its open chain analogue 10, because the strain relief is far higher for the rigid lactone 1 than for the con**formationally mobile ester IO. -**

References and Notes

- **1. a.Summary in "Comprehensive Organic Chemistry",D.H.H.Barton and W.D.Ollis, ed.,1sted.Vol.I.,p.1027,Pergamon Press,Oxford,1979. b.House,H.O.,"Mo Synthetic Reactions",2 nd ed.,p. 498,Wiley,Menlo Park,l972.**
- **2. An&-epimerization of cis-3,4-diphenyl-2-oxetanone was presumed but not** proved by Imai, T. Nishida, S.J. Org. Chem. 1980, 45, 2354.
- **3. Mulzer,J.; Zippel,M.; Angew.Chem.Int.Ed.Engl. m, 19,465.**
- 4. Review: Reichardt, Ch.; Angew. Chem. Int.Ed. Engl. 1979, 18, 98.
- 5. Koppel, I.; Paju, A.; Reakcionnaja Sposobnost, Organiceskich Sredinij, 1974, **11,121.**
- **6. Gutmann,V.; Electrochim.Acta, 1976, 21,661.**
- 7. DN and B can be linearly correlated with each other⁴.
- 8. Wang, H.C.; Levin, G.; Szwarc, M.; J.Am.Chem. Soc. 1977, 99, 5056; Hünig, S.; **Wehner,G.; Chem.Ber. lq80, 113,302.**
- **9. Mulzer,J.; Kerkmann,Th.; J.Am.Chem.Soc. lq80, 102,362O.**
- **10. e.g.Schriesheim,A.;Muller,R.J.;Rowe jr. C.A.,J.Am.Chem.Soc. Shechter,H.;Collis,H.J.;Dessy,R.;Okuzumi,Y.;Chen,A.; J.Am.Chem.Soc. 1962 84,2905.**
- **11. Benson,S.;Thermochemical Kinetics 1 st ed.,p.l79.Wiley, New York.1968.**
- 12. Mulzer, J.; Brüntrup, G.; Angew. Chem. Int. Ed. Engl. 1979, 18,793.
- **13. The H/D-exchange rate of ethyl phenylacetate is** 10^3 **lower than** k_{en} **under identical conditions (100°C,pyridine/D20).By contrast,k ep is in an ep order of magnitude comparable to the enolization rates of ketones and** aldehydes (e.g.2-methyl-propanal in pyridine/H₀0:7.9*10⁻⁶ 1 mole⁻¹sec.⁻¹ **at 35°C;Bender,M.L.;Williams,A.; J.Am.Chem.Soc.1966.88, 2502.** Under identical conditions $k_{ep} = 1.7^{\circ}10^{-6}$ 1 mole⁻¹ sec⁻¹).
- **14. To exclude basic impurities as far as possible the kinetic experiments were performed in quartz tubes with carefully purified solvents and** recrystallized 1.

(Received in Germany 18 March l9Sl)